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AN INTENSE TURBULENT THERMIC IN A STABLY STRATIFIED ATMOSPHERE. 

NUMERICAL MODELING 

Yu. A. Gostintsev and A. F. Solodovnik UDC 536.253 

Nonsteady-state convective turbulent flow due to climbing of a volume of liquid or gas 
with a deficit of density (a thermic) in an unrestricted medium has been theoretically studied 
in a number of works, which are reviewed in [i, 2]. These investigations allow one to quali- 
tatively describe the gas-dynamic structure of the flow and the mechanism behind heat and 
mass exchange between the thermic and the surrounding medium. A study of these flows is 
complicated by the lack of data on the intensity of turbulent exchange in a thermic, which 
leads to arbitrariness in selecting the values for the coefficients of turbulent transfer. 
Here, the conditions required for adequate numerical modeling of a turbulent thermic are 
determined, and the dynamics of its climb from the moment of formation to that of height 
equilibrium in a stably stratified atmosphere are calculated. 

i. Formulation of the Problem. The system of turbulence equations for describing axial- 
ly symmetric, nonsteady-state convective flow of gas in a heat-concentrated thermic has the 
following form in the Boussinesq approximation: 

OQ 0 ~ 0r 0 ~ O, 0 E O~ 0 E O~r Oo 
O-'-t + ~ r Or Or 7 0 - ~ = ~ x .  "~x + Or r Or "0"7' 

Oo O ~  O, t 0 0r ( O E O ~  t 0 EpO~)  N'O~ (i.i) 
o - i - + ~ 7 O r  r O r ~  = P r - 1  ~ ~ + 7 ~  bT --'7"~7-r' 

54, January-February, 1987. 

~F + h~ 7 ~ r ~rff~x = Pr-*~, + 

o8 o 8 o r  t o o ,  ( O E O ~ + _ . l  o ~, 0s 
Ot "~" Ox r Or r ~ e ~ =  Sc  - 1  _ _  - ~ , ~r~r~J,: 

= r ~ Or r Or 2 r Ox z'  

Q----~=~fr0~ r = O ,  f~ =~----~=ff=e-+0, r~+x2-+oo, 
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Here x and r are the vertical and radial coordinates; fl, component of the vorticity vector 
perpendicular to the plane (x, r); ~, flow function; g, projection of the acceleration due 
to gravity onto the axis x; ~ = T - T a, E = Y - Ya' excess temperature and mass of a gas 
concentration with a molecular weight of ~ relative to the surrounding medium; ~ = i/Ta, 
thermal expansion coefficient; N 2 = gS(dTa/dx + g/Cp), Vaisala-Brunt coefficient, which char- 
acterizes the degree of atmospheric stability; and Pr and Sc, Prandtl and Schmidt turbulence 
numbers (we will assume that Pr - Sc). 

The turbulence viscosity E in a freely convective flow is due to motion whose character- 
istics are determined by the integral quantity for the reserve buoyancy of the climbing vol- 

ume of gas If0= (ordrdx m4/sec 2. Then one can write E = H0*/2~, where v in the general 
--c~ 0 

case depends on the spatial coordinates of the turbulence coefficient. This approach for 
assigning the turbulence viscosity is principally different from that in [3, 4], where E 
is assumed independent of the motion parameters, i.e., one uses the analogy between laminar 
and turbulent flow. 

Observations of thermics under various conditions indicate that, as a rule, from some 
moment in time after the initiation of motion, the climb of the buoyant cloud enters into 
a state of self-similarity, which is characterized by time-similarity of the cloud form and 
by a flow that is independent of the actual initial conditions [5]. Considering this, a 
study of the climb of a thermic into a stably stratified atmosphere can be divided into three 
stages: an initial stage (which determines the parameters H 0 and R0, the characteristic 
initial dimensions of the cloud), a self-similarity stage H0, and a hovering stage H0, N. 
The hovering stage, where the cloud climbs into a stably stratified medium, begins at times 
comparable with the characteristic time for thermal restructuring of the atmosphere (t > N-*). 
When t << N -I, the thermic "feels" the state of the surrounding medium and moves accordingly 
in a uniformly stratified atmosphere (dTa/dx = --g/cD, N = 0). The self-similarity state is 
achieved for R02H0 -x/2 << t << N -x, when the thermic'has already "forgotten" the conditions 
in which it is formed (its volume is many times greater than the initial volume), but it 
still does not "feel" the conditions of the surrounding medium. It is useful to render each 
function dimensionless in each stage for obtaining the most general results. 

2. Self-Similarity Stage in the Climb of a Thermic. It is evident from (i.i) that 
the dynamic problem of the climb of a heat-concentrated thermic can be solved on the basis 
of only the equations of motion and the equations for the acceleration of buoyant forces m 
without detailing the thermal and density distributions. Rendering the dynamic problem for 
the self-similarity stage in the climb of the thermic into dimensionless form, we find that 

.q= t-~W(n~ ~),, E =  n'o/~V, (2.1)  
= r~i-lla*~ -1Is nso/~tt/=F (n, ~), n =  o ~ , 

= II~o~t-a/=~ (n, g),. r = *nO *at-*/=. 

Because of the absence of data on the distribution of turbulence, viscosity in a thermic, 
a simple model for isotropic turbulence is used where the quantity v is assumed independent 
of the spatial coordinates. 

The dimensionless system of equations for the self-similarity stage in the climb of 
the thermic is obtained after substituting (i.i) into (2.1) for N = 0 

~ w  - - - - ~  + + + v + - -  = ~ OB ~ ~ k - ~  O~ .~ Oq ] ~ O~ (2.2)  

a~F laF ii 0~ Og ~ 71 0~1 
~ 0 0  0 

W = F = ~ = O ~  ~1=0; W = F =  ~o-+0~ ?12 q- g~-+oo. 
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The unknown constants v and Pr enter into (2.2). For finding them, the problem for a self- 
similar thermic is solved for various values of v and Pr to obtain the dependence of these 
parameters on those characteristics of the flow that are permitted by experimental measure- 
ments and to find the values of the unknown constants from a comparison of the calculation 
results and the experimental data. Problem (2.2) is solved by using an implicit scheme for 
the direction variables. A detailed description of the difference scheme is given in [2]. 

Calculated dependences of the kinematic characteristics of the climb of the thermic 
are represented in Fig. i, where the coordinates of its upper border ~c (solid lines) and 
the tangent of the half angle of expansion n (dashed lines) are given as functions of v for 
Pr = 0.6, 1.0, 1.4, 1.6 (lines 1-4). The boundary of the thermic is determined according 
to the position of the isocurve ~ = 0.1~ma x. 

For large values of v, the flow in the thermic is characterized by a small density gradi- 
ent, and the toroidal vortex is large in size. With a decrease in v, the vortex becomes 
more compact, and the intensity of circulatory motion in the medium increases. The surround- 
ing gas captured in the flow deeply penetrates into the "substance" of the thermic, and the 
lines for equal density are significantly distorted. An increase in Pr leads to an attenua- 
tion of the track behind the thermic, and a decrease in v leads to an amplification of the 
circulatory motion of the medium. 

We will introduce the turbulent analog to the Rayleigh number, which relates the total 
buoyance reserve of the cloud H0, the effective turbulence viscosity coefficients E, and 
the thermal conductivity ET: Ra = H0/(EET) = Pr/v 2. Using self-similarity criteria Ra, 
the values of ~c and n on ~ and Pr (Fig. i) can be reduced to single curves (Fig. 2). 

The experimental data in [6] indicate that ~c = 4.35 for turbulent, axially symmetric 
thermics, which, according to Fig. 2, corresponds to Ra = 520. The tangent of half the 
expansion angle of the thermic then has the value n = 0.2, which is within the range of the 
experimentally measured quantity. 

Hence one can establish a single relation between the effective transfer coefficients 
Pr/v 2 = 520 for turbulent thermics, which ensures a correspondence between the calculated and 
physical flow fields in terms of integral characteristics (the character of the rise of the 
upper boundary and the expansion angle of the cloud). 

The structure of a self-similar turbulent thermic for Pr = 1.6, ~ = 0.055 (Ra = 520) 
is illustrated in Fig. 3, where the solid curves indicate isocurves for ~ = const, while 
the dashed curves are for F = const. 

Structures of the thermics calculated for different values of v and Pr vary for the 
obtained relation. For obtaining real values of the turbulence coefficient and the Prandtl 
turbulence number, it is necessary to find additional experimental data on the flow structure. 

3. Initial Stage in the Climb of the Thermic. Rendering the functions for calculating 
the initial stage in the climb of the thermic into dimensionless form, we find that 

~ / 2 ~ ; 2 ~  (7, ~, ~)~ E ~1/2 ~ 0 0 ~% ~ ~)~ ~ = T/~O' ~ = ~i~O ' 
= 0 v., (3.1) 
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The dimensionless system of equations obtained after substituting (3.1) into (i.I) for 
N = 0 is solved in the same manner as in the previous problem for Pr = 1.6, 9 = 0.055. The 
initial conditions are given in the form 

/~o, ~ + (~-~o) <~, 
�9 =o,. ~:~: o, + = l+o~Xp<_ ~oo[ff(~_ $1 ~ +~-~]b. ~' + ( ~ ' - i o 1 ' > ~ .  

Here  ~0 i s  t h e  d i m e n s i o n l e s s  c o o r d i n a t e  f o r  t h e  c e n t e r  o f  t h e  c l o u d  a t  ~r = O, a nd  t h e  q u a n t i t y  
N0 is determined from the normalized integral 

Calculations show that, after the volume of buoyant gas is released, a toroidal vortex 
arises near its lateral boundary whose center is situated at a single height with the center 
of the stationary cloud. During the evolution of ascending motion, circulation of the gas 
increases, and the thermic takes on a characteristic mushroom-shaped form. From the time 

= 1.6, the rate of climb for the thermic decreases, and its motion smoothly transfers to 
the self-similar state. Coordinates for the upper boundary of the thermic ~c and the maximum 
flow function 9max as functions of the dimensionless time ~i/2 are shown in Fig. 4. Linear 
dependences correspond to the self-similar state. Using the plot, one can determine the 
characteristic time of the initial stage in the climb of the buoyant cloud: 0 < t < 3R~ I/2 

4. Hovering Stage of the Thermic in a Stable Exponential Atmosphere. The case when 
N = const corresponds to the exponential model of the atmosphere, where a change in the poten- 
tial temperature 0 over height goes according to @ = O, exp(N2x/g) [7]. This model sufficient- 
ly describes the real atmosphere, beginning at a height of 1-1.5 km, and is useful for model- 
ing the climb of intense thermics that hover in the tropopause. 

We will consider a thermic of thermal nature with an access quantity of heat Q0 (H0 = 
gSQo/(2zpaCp)) relative to the surrounding medium and with a mass M 0 of a passive admixture. 
Reducing the problem to dimensionless form, we find that 

= NW(~, ~., 7), ~ =rNll2EIoll4~ ~= xN1/21-Iol14, 
= (gl~)-~H~d~N'~ (~, i 7),  

(4.1) 
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(P0 is the initial density of the buoyant cloud). 

After substituting (4.1) into (i.i), we have 

awa__7 + a W aF 0 w aF { a~w a2w _~ w l " a ~ 
(4.2) a; ~ a~ o~ ~ a ; = ~ [ , - ~ + - ~ + _ ,  .,~--T~,~ 

a~ a ~ aF I a aF { a2~ a~  I a ~  I aF 
a~ + a ;  n 071 ~1 ml cp ~ = P r - l v  \ - - ~ -  + - -  + 

# ~e t ~Pe 0 ~e OF t ~ OF ( a'~p c ' aq~ ~ 
aT e a;  1] Oil %] a n qge '~ = SC'--I? \7 ~- -- o~ ~ + -~-.0,1 7' 

o o o o  

W = ~ aal rl Oq ~ rl O~ ~ ~ , ~Pc~d~ld~ = t~ 
- - o o  D 

Ocp #~e w=F=-~=7-~-=o,  n = 0 ~  w =  F = ~ =  ~o--,.% ,a~+;~-.,.oo 

(the tilde is omitted in this system of equations). 

For calculating the dynamics of a hovering thermic, we will use the following self- 
similar solution as initial conditions 

(~, L 70) 7 ; ' w  (~, ~), ~, = o ~, ~ = ~1/% ( 4 . 3 )  

Since the solution must not be a function of ~0, it is determined through inspection from 
the condition that the flow remains in the self-similar state for some time after ~0- 

The dynamics of a hovering thermic for Pr = Sc = 1.6, v = 0.055, ~0 = 1 are indicated 
in Fig. 5 by the dimensionless vertical and radial coordinates of the characteristic points 
of the cloud [curves 1 and 6 - the maxima of the admixture concentration (~c, ~c); curves 2 
and 5 - the excess temperature (~T, DT); and curves 3 and 4 - the flow function (~F, ~F)] as 
functions of the dimensionless time ~, where the dashed lines correspond to the self-similar 
characteristics. It is evident that the thermic "descends" from the self'similar state after 
some time (~ > ~0)- The rate of climb decreases while the radius increases. When ~ = .2.6 
and ~ = 3.4, the vortex center and the point of maximum admixture concentration are at their 
greatest heights, respectively: 

xF ~ 5,2Hlo/aN-1/~. xe ~ 6AIII/4N-112. 

After passing the level of thermal equilibrium, the cloud begins to oscillate. When 
the excess thermal energy of the thermic becomes small, the climb of the gas particles in the 
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TABLE 1 

56,00 
43,38 
32,33 
25,05 

2 0 , 0 0  
t3,72 
6,13 

0,73 
0,79 
0,88 
0,96 
1,05 
1,14 
1,60 

0,81 
0,93 
1,02 
1,12 
1,20 
1,'~2 
1,83 

JI $ 

toroidal vortex results in their overcooling, while descent entails overheating. Then, a 
region of overcooling relative to the surrounding medium is formed near the axis of symmetry 
for convective formation. A region of insignificant overheating is located at the periphery. 
The structure of the calculated flow at time ~ = 2.6 is given in Fig. 6, where the solid lines 
represent isotherms and the dashed lines indicate lines for equivalent flow functions. The 
numbers near the curves are values of the functions on isocurves in relation to their maxi- 
mum values. The toroidal vortex generated by the climbing buoyant cloud rapidly increases 
in transverse dimension at the hovering stage, but the velocity of the gas in it and the 
convective transfer of the admixture decrease. The region of maximum admixture concentra- 
tion approximates the axis of symmetry over time, and the isocurves for the concentration 
become almost spherical in form. 

The distribution of the admixture introduced by the cloud over the height of the atmo- 
sphere at the time T = 3.4 is shown in Fig. 7 and was obtained by integrating the concentra- 
tion field over the radius. 

5. Transfer of the Thermic into the Lower Layers of the Stratosphere. A sufficiently 
intense thermic (clouds from nuclear explosions or volcanic eruptions) can climb to heights 
greater than the tropopause and enter the lower layers of the stratosphere. For modeling 
this case, one must account for the different states of the atmosphere up to and above the 
tropopause. According to the international standard model of the atmosphere, the Vaisala- 
Brunt coefficient in the troposphere has the value N l = 0.011 sec -I If x = xT, then N 
changes abruptly up to N 2 = 0.021 sec -I, which is the case in the lower layers of the strato- 
sphere. The position of the level of the tropopause XT varies with latitude and season. For 
the northern hemisphere, xT = i0 km, on the average, while it is 16 km in the southern hemi- 
sphere. 

The problem of a climbing thermic in a two-layer atmosphere can be put into dimension- 
less form as follows: 
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= iiA/=x~wo (no, ~o, ~o), E = n~/~, 
* = II~/2x~ F~ 01% ~o ~o), ~o = li~/2x~2t, 

s = Mop;~x;ar (~o, ~o, zo), ~o = x/x,,  

The dimensionless system of equations is similar to (4.2) with the exclusion of the last 
term in the equation for ~, which is written in the form-i/n~176176176 Here, S = 
NIXTH0 -I/2 is a dimensionless parameter that is the ratio of the squares of the height of 
the tropopause to the characteristic height for hovering of the cloud in the troposphere. 
Using the indicated model of the atmosphere, f(~0) = i when ~0 ~ I and f(~0) = N=/NI = 1.91 
when ~0 > i. 

As an initial condition for T o = Zo o , we will use the self-similar solution for Pr = 
Sc = 1.6 and v = 0.055. Recalculation of the initial distributions for the dimensionless 
density functions is similar to that for (4.3). The calculations were done for different 
values of the parameter S. The obtained maximum heights for the climb of characteristic 
points in the cloud - the vortex center ~F ~ and the maximum admixture concentration ~c ~ - 
are given in Table i. 

When S > 56, the cloud hovers in the troposphere, while for S < i0, the climb deviates 
from the self-similar state in the stratosphere. The solutions for S > 56 and <i0 coincide 
with those for a single-layer atmospheric model if one assumed that N = N I for the first 
case and N = N2 for the second case. Hence, for the indicate range of values for S, the 
thermic does not "feel" the abrupt transition to the stratosphere at the hovering stage and 
can be described using the single-layer atmospheric model. 

The flow structure for an intermediate value of S = 20 at time z0 = 0.084 is illus- 
trated in Fig. 8. The lower layers of the stratosphere suppress the climbing convective 
flow of the gas more intensely than the troposphere (N 2 > NI). This flattens the isotherms 
of the cloud upon transition through the tropopause. If ~0 < 0.06, the climb of the cloud 
for a given value of S occurs in the self-similar state, and the flow structure in it is 
similar to that in Fig. 3. If ~0 > 0.3, the cloud becomes spheroidal. 

The above results for the hovering stage of the thermic in a two-layer atmosphere allow 
one to determine the fraction of the admixture introduced into the stratosphere by the cloud 
as a function of the parameter S (Fig. 9). This dependence can be used to estimate the quan- 
tity of admixture ejected beyond the tropopause for various positions of the level XT and to 
determine the thermal energy of the thermic. Hence, for XT = i0 km, the thermal energy of the 
cloud Q (J) corresponds to the quantity [2] 

[g~Q/(2~paCp)]~/2 ,~ 5,3. I ~ Q  -1/2, 

Then, according to Fig. 9, a thermic with an energy less than 1.5.1014 J hovers below the 
tropopause and does not eject the admixture into the stratosphere. In the southern hemi- 
sphere, contamination of the stratosphere by an admixture contained in a buoyant cloud will 
not occur if the thermal energy of the cloud does not exceed 1.04.1015 J. 

i. 

2. 

3. 

4. 

5. 
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THERMAL GRAVITATIONAL CONVECTION IN A VARIABLE VECTOR FIELD 

OF SMALL ACCELERATIONS 

V. S. Avduevskii, A. V. Korol'kov, V. S. Kuptsova, 
and V. V. Savichev 

UDC 536.25 

The use of nearly weightless states in the manufacture of materials can allow for im- 
provement of structure and for uniformity of mixture distribution in samples [1-3]. In the 
absence of gravity, small accelerations due to various perturbations play a primary role 
in the evolution of gravitational convection. Small accelerations are related to the rigid- 
ity characteristics of structures and are periodic in nature, where the vector for small 
accelerations g continuously changes in quantity and direction over time. In many cases, 
this change can to some degree of accuracy be considered as the rotation of a vector with 
a constant modulus and angular velocity in some fixed plane 

lgl = const, Og = mr, (1 )  

where ~ is the angular velocity of rotation; Og is the angle between the current and initial 
directions of the vector g; and the symbol - will be used to denote dimensional quantities. 

In order to see what effect (and if there is an effect, in what manner) a change in 
the vector of a small local acceleration has on the evolution of convective transfer pro- 
cesses, we studied the model problem of thermal gravitational convection in a cylindrical 
volume with rotation g in a plane perpendicular to the axis of the cylinder. 

The mathematical model for the calculation scheme is given in Fig. i, where one must 
consider the transfer equations for momentum and energy in the variables T, ~, w (the tempera- 
ture, the flow function, and the vortex intensity function) and the equation for the rela- 
tion between ~ and w. Using the polar coordinate system in dimensionless form with the Bous- 
sinesq approximation, these equations have the form: form the momentum transfer equation, 

Ow aw v Ot~ OT cos(O--Og + r + ; 
OFo + u ~ + ' 7 " ~ ' = P r 2 G r  s i n ( O - - O g ) +  aO' r r ~" [ ~ k  Or~ aO 2] 

for the energy transfer equation, 

aT OT v OT t 0 [ OT'~ t 02T 
OFo + u-'~-r + T-~6-=-i:-g-;  l~r-~-r J + r2 002' 

i o~ oq, 
u = T - ~ - - ,  v - -  - - - ~ 7 / ~  

and for the equation for the relation between ~ and w, 

t 0 r-~r + =tv~,  
r a, 7 - ~  

w h i l e  t h e  change  in  g o v e r  t i m e  i s  g i v e n  by r e l a t i o n  ( l ) .  C o n v e n t i o n a l  d e f i n i t i o n s  a r e  u s e d  
h e r e ,  and t h e  t r a n s f o r m a t i o n  t o  d i m e n s i o n l e s s  q u a n t i t i e s  i s  done w i t h  t h e  r e l a t i o n s  
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